罪與筏

前幾日,收到一道來自後輩的中五 M2 數學試題。
問題出得不錯,還記得 M2 課程內容的朋友請務必試一下。

(用電腦看 \LaTeX 較好。)

問題

  1. Let a be any positive constant and f(x) be any function such that \displaystyle\int_0^a f(x) \;\text{d}x exists. Show that

        \[\int_0^a f(x) \;\text{d}x = \int_0^a f(a - x) \;\text{d}x\text{.}\]

  2. It is given that \displaystyle\int_0^\pi \ln(1 + 2k\cos x + k^2) \;\text{d}x exists for all real values of k. Let

        \[I = \int_0^\pi \ln(1 + 2b\cos x + b^2) \;\text{d}x\]

    and

        \[\displaystyle J = \int_0^\pi \ln(1 - 2b\cos x + b^2) \;\text{d}x\]

    , where b is any constant.

    1. Using the result of (a), show that I = J.
    2. Show that \displaystyle I + J = \int_0^\pi \ln(1 - 2b^2\cos x + b^4) \;\text{d}x.
  3. Evaluate \displaystyle\int_0^\pi \ln(\sin x) \;\text{d}x.

———我是分隔線———

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

———我是分隔線———

答案

(a) 和 (b)(i) 基本上是送分題。不懂的同學應面壁思過。

  1. Let x = a - y. Then, \text{d}y = -\text{d}x.

         \begin{align*} \int_0^a f(x) \;\text{d}x &= \int_a^0 -f(a - y) \;\text{d}y\\ &= \int_0^a f(a - y) \;\text{d}y\\ &= \int_0^a f(a - x) \;\text{d}x \end{align*}

  2. 從 (b)(ii) 開始就難解了。
    1. By (a),

          \begin{align*} \int_0^\pi \ln(1 + 2b\cos x + b^2) \;\text{d}x &= \int_0^\pi \ln(1 + 2b\cos (\pi - x) + b^2) \;\text{d}x\\ &= \int_0^\pi \ln(1 - 2b\cos x + b^2) \;\text{d}x \end{align*}

      Hence I = J.

    2. Before proving this, let’s prove a lemma:

           \[\int_0^\pi f(\cos 2x) \;\text{d}x = \int_0^\pi f(\cos x) \;\text{d}x\] Above holds for all functions $f$, given such integrals exist.\begin{proof} Let $y = 2x$. Then $\text{d}x = \frac{1}{2}\text{d}y$. \begin{align*} \int_0^\pi f(\cos 2x) \;\text{d}x &= \frac{1}{2}\int_0^{2\pi} f(\cos y) \;\text{d}y\\ &= \frac{1}{2}\int_0^{\pi} f(\cos y) \;\text{d}y + \frac{1}{2}\int_0^{\pi} f(\cos (\pi + y)) \;\text{d}y\\ &= \frac{1}{2}\int_0^{\pi} f(\cos y) \;\text{d}y + \frac{1}{2}\int_0^{\pi} f(\cos y) \;\text{d}y\\ &= \int_0^{\pi} f(\cos y) \;\text{d}y = \int_0^{\pi} f(\cos x) \;\text{d}x \end{align*} \end{proof}

      Now we can move on.

          \begin{align*} I + J &= \int_0^\pi \ln(1 + 2b\cos x + b^2) + \ln(1 -2b\cos x + b^2) \;\text{d}x\\ &= \int_0^\pi \ln\left[(1 + b^2)^2 - (2b\cos x)^2\right] \;\text{d}x\\ &= \int_0^\pi \ln(b^4 + 2b^2 + 1 - 4b^2\cos^2x) \;\text{d}x\\ &= \int_0^\pi \ln(1 - 2b^2(2\cos^2x - 1) + b^4) \;\text{d}x\\ &= \int_0^\pi \ln(1 - 2b^2\cos2x + b^4) \;\text{d}x\\ &= \int_0^\pi \ln(1-2b^2\cos x + b^4) \;\text{d}x &\text{(Lemma)} \end{align*}

  3. From (b), we can deduce that:

        \[2\int_0^\pi \ln(1 -2b\cos x + b^2) \;\text{d}x = \int_0^{\pi}\ln(1-2b^2\cos x + b^4) \;\text{d}x\]

    Set b = 1:

        \begin{align*} 2\int_0^\pi \ln(2 -2\cos x) \;\text{d}x &= \int_0^\pi \ln(2 -2\cos x) \;\text{d}x\\ \int_0^\pi \ln(2 -2\cos x) \;\text{d}x &= 0\\ \int_0^\pi \ln(2 -2\cos 2x) \;\text{d}x &= 0 &\text{(Lemma)}\\ \int_0^\pi \ln\left(4\sin^2x\right)\;\text{d}x &= 0\\ \int_0^\pi \ln4 + 2\ln\left(\sin x\right)\;\text{d}x &= 0\\ 2\int_0^\pi \ln\left(\sin x\right)\;\text{d}x + \pi\ln4&=0\\ \int_0^\pi \ln\left(\sin x\right)\;\text{d}x &= -\frac{1}{2}\pi\ln4\\ &= -\pi\ln2 \end{align*}

感想

(b)(ii): 做到 \cos 2x 的時候,我一開始還以為是出錯題。若果中了這陷阱,大概會失去一半分數吧。哈哈哈⋯⋯
(c): 一般中學生應該很難看出 (b) 和 (c) 之間的關係。(聽說考試中只有一人看得到)出題的到底經歷了甚麼,才想得出這種問題呢?

這題出得非常好。

以前我在母校考試的時候,老師們很喜歡玩 out syllabus 的遊戲。初中化學出 reactivity of metals,高中數學出 t-method (t formula),matrix diagonalization⋯⋯為了分出高下而玩 out syllabus,變相鼓勵學生學習 DSE 以外的知識。對一心想入大學的學生而言,此舉只是浪費時間。在有限的時間中,考生不會能夠應付到無限的考試範圍。

只要肯花點心思,即使是 in syllabus 的問題也可以出得非常難。這題就是例子。不過直抄 AL 問題比想這些輕鬆百倍吧。

此外,題目也巧妙地運用了 \sin\log 的特性。難度高之餘也考慮了美感,非常好。

標題咩事?

罪 → sin → sine

筏 → 木筏 → log → logarithm

爛 gag 嚟㗎。笑吓啦。

東張西望主持教中風患者如何強顏歡笑
0 0 votes
Article Rating
Subscribe
Notify of
guest
0 Comments
Oldest
Newest Most Voted
Inline Feedbacks
View all comments